Determining Probability

There’s been some debate here at TSZ recently about probability and the interpretation of probability.

I took some flak (my personal subjective opinion) for attempting to distinguish between calculating probabilities and estimating probabilities.

Yet in recent reading I came across this bit of text:

How do you determine the probability that a given event will occur? There are two ways: You can calculate it theoretically, or you can estimate it experimentally by performing a large number of trials.

– Probability: For the Enthusiastic Beginning. p. 335

Continue reading

Introduction to Evolutionary Informatics

Introduction to Evolutionary Informatics, by Robert J. Marks II, the “Charles Darwin of Intelligent Design”; William A. Dembski, the “Isaac Newton of Information Theory”; and Winston Ewert, the “Charles Ingram of Active Information.” World Scientific, 332 pages.
Classification: Engineering mathematics. Engineering analysis. (TA347)
Subjects: Evolutionary computation. Information technology–Mathematics.1

Yes, Tom English was right to warn us not to buy the book until the authors establish that their mathematical analysis of search applies to models of evolution.

But some of us have bought (or borrowed) the book nevertheless. As Denyse O’Leary said: It is surprisingly easy to read. I suppose she is right, as long as you do not try to follow their conclusions, but accept it as Gospel truth.

In the thread Who thinks Introduction to Evolutionary Informatics should be on your summer reading list? at Uncommon Descent, there is a list of endorsements – and I have to wonder if everyone who endorsed the book actually read it. “Rigorous and humorous”? Really?

Dembski, Marks, and Ewert will never explain how their work applies to models of evolution. But why not create at list of things which are problematic (or at least strange) with the book itself? Here is a start (partly copied from UD):
Continue reading

Two planets with life are more miraculous than one

The Sensuous Curmudgeon, who presently cannot post to his weblog, comments:

This Discoveroid article is amazing. Could Atheism Survive the Discovery of Extraterrestrial Life?. I wish I could make a new post about it. They say that if life is found elsewhere, that too is a miracle, so then you gotta believe in the intelligent designer. They say:

“The probability of life spontaneously self-assembling anywhere in this universe is mind-staggeringly unlikely; essentially zero. If you are so unquestioningly naïve as to believe we just got incredibly lucky, then bless your soul.”

Actually, “they” who posted at Evolution News and Views is someone we all love dearly, and see occasionally in the Zone — that master of arguments from improbability, Kirk Durston.

Evolution and Functional Information

Here, one of my brilliant MD PhD students and I study one of the “information” arguments against evolution. What do you think of our study?

I recently put this preprint in biorxiv. To be clear, this study is not yet peer-reviewed, and I do not want anyone to miss this point. This is an “experiment” too. I’m curious to see if these types of studies are publishable. If they are, you might see more from me. Currently it is under review at a very good journal. So it might actually turn the corner and get out there. An a parallel question: do you think this type of work should be published?


I’m curious what the community thinks. I hope it is clear enough for non-experts to follow too. We went to great lengths to make the source code for the simulations available in an easy to read and annotated format. My hope is that a college level student could follow the details. And even if you can’t, you can weigh in on if the scientific community should publish this type of work.

Functional Information and Evolution

“Functional Information”—estimated from the mutual information of protein sequence alignments—has been proposed as a reliable way of estimating the number of proteins with a specified function and the consequent difficulty of evolving a new function. The fantastic rarity of functional proteins computed by this approach emboldens some to argue that evolution is impossible. Random searches, it seems, would have no hope of finding new functions. Here, we use simulations to demonstrate that sequence alignments are a poor estimate of functional information. The mutual information of sequence alignments fantastically underestimates of the true number of functional proteins. In addition to functional constraints, mutual information is also strongly influenced by a family’s history, mutational bias, and selection. Regardless, even if functional information could be reliably calculated, it tells us nothing about the difficulty of evolving new functions, because it does not estimate the distance between a new function and existing functions. Moreover, the pervasive observation of multifunctional proteins suggests that functions are actually very close to one another and abundant. Multifunctional proteins would be impossible if the FI argument against evolution were true.

Dice Entropy – A Programming Challenge

Given the importance of information theory to some intelligent design arguments I thought it might be nice to have a toolkit of some basic functions related to the sorts of calculations associated with information theory, regardless of which side of the debate one is on.

What would those functions consist of?

Continue reading

Thorp, Shannon: Inspiration for Alternative Perspectives on the ID vs. Naturalism Debate

The writings and life work of Ed Thorp, professor at MIT, influenced many of my notions of ID (though Thorp and Shannon are not ID proponents). I happened upon a forgotten mathematical paper by Ed Thorp in 1961 in the Proceedings of the National Academy of Sciences that launched his stellar career into Wall Street. If the TSZ regulars are tired of talking and arguing ID, then I offer a link to Thorp’s landmark paper. That 1961 PNAS article consists of a mere three pages. It is terse, and almost shocking in its economy of words and straightforward English. The paper can be downloaded from:

A Favorable Strategy for Twenty One, Proceedings National Academy of Sciences.

Thorp was a colleague of Claude Shannon (founder of information theory, and inventor of the notion of “bit”) at MIT. Thorp managed to publish his theory about blackjack through the sponsorship of Shannon. He was able to scientifically prove his theories in the casinos and Wall Street and went on to make hundreds of millions of dollars through his scientific approach to estimating and profiting from expected value. Thorp was the central figure in the real life stories featured in the book
Fortune’s Formula: The Untold Story of the Scientific Betting System that Beat the Casino’s and Wall Street by William Poundstone.
Continue reading

The Real EleP(T|H)ant in the Room

TSZ has made much ado about P(T|H), a conditional probability based on a materialistic hypothesis. They don’t seem to realize that H pertains to their position and that H cannot be had means their position is untestable. The only reason the conditional probability exists in the first place is due to the fact that the claims of evolutionists cannot be directly tested in a lab. If their claims could be directly tested then there wouldn’t be any need for a conditional probability.

If P(T|H) cannot be calculated it is due to the failure of evolutionists to provide H and their failure to find experimental evidence to support their claims.

I know what the complaints are going to be- “It is Dembski’s metric”- but yet it is in relation to your position and it wouldn’t exist if you actually had something that could be scientifically tested.



Wright, Fisher, and the Weasel

Richard Dawkins’s computer simulation algorithm explores how long it takes a 28-letter-long phrase to evolve to become the phrase “Methinks it is like a weasel”. The Weasel program has a single example of the phrase which produces a number of offspring, with each letter subject to mutation, where there are 27 possible letters, the 26 letters A-Z and a space. The offspring that is closest to that target replaces the single parent. The purpose of the program is to show that creationist orators who argue that evolutionary biology explains adaptations by “chance” are misleading their audiences. Pure random mutation without any selection would lead to a random sequence of 28-letter phrases. There are 27^{28} possible 28-letter phrases, so it should take about 10^{40} different phrases before we found the target. That is without arranging that the phrase that replaces the parent is the one closest to the target. Once that highly nonrandom condition is imposed, the number of generations to success drops dramatically, from 10^{40} to mere thousands.

Although Dawkins’s Weasel algorithm is a dramatic success at making clear the difference between pure “chance” and selection, it differs from standard evolutionary models. It has only one haploid adult in each generation, and since the offspring that is most fit is always chosen, the strength of selection is in effect infinite. How does this compare to the standard Wright-Fisher model of theoretical population genetics? Continue reading

Philosophy and Complexity of Rube Goldberg Machines

Michael Behe is best known for coining the phrase Irreducible Complexity, but I think his likening of biological systems to Rube Goldberg machines is a better way to frame the problem of evolving the black boxes and the other extravagances of the biological world.
Continue reading