On Uncommon Descent, poster gpuccio has been discussing “functional information”. Most of gpuccio’s argument is a conventional “islands of function” argument. Not being very knowledgeable about biochemistry, I’ll happily leave that argument to others.
But I have been intrigued by gpuccio’s use of Functional Information, in particular gpuccio’s assertion that if we observe 500 bits of it, that this is a reliable indicator of Design, as here, about at the 11th sentence of point (a):
… the idea is that if we observe any object that exhibits complex functional information (for example, more than 500 bits of functional information ) for an explicitly defined function (whatever it is) we can safely infer design.
I wonder how this general method works. As far as I can see, it doesn’t work. There would be seem to be three possible ways of arguing for it, and in the end; two don’t work and one is just plain silly. Which of these is the basis for gpuccio’s statement? Let’s investigate …
A quick summary
Let me list the three ways, briefly.
(1) The first is the argument using William Dembski’s (2002) Law of Conservation of Complex Specified Information. I have argued (2007) that this is formulated in such a way as to compare apples to oranges, and thus is not able to reject normal evolutionary processes as explanations for the “complex” functional information. In any case, I see little sign that gpuccio is using the LCCSI.
(2) The second is the argument that the functional information indicates that only an extremely small fraction of genotypes have the desired function, and the rest are all alike in totally lacking any of this function. This would prevent natural selection from following any path of increasing fitness to the function, and the rareness of the genotypes that have nonzero function would prevent mutational processes from finding them. This is, as far as I can tell, gpuccio’s islands-of-function argument. If such cases can be found, then explaining them by natural evolutionary processes would indeed be difficult. That is gpuccio’s main argument, and I leave it to others to argue with its application in the cases where gpuccio uses it. I am concerned here, not with the islands-of-function argument itself, but with whether the design inference from 500 bits of functional information is generally valid.
We are asking here whether, in general, observation of more than 500 bits of functional information is “a reliable indicator of design”. And gpuccio’s definition of functional information is not confined to cases of islands of function, but also includes cases where there would be a path to along which function increases. In such cases, seeing 500 bits of functional information, we cannot conclude from this that it is extremely unlikely to have arisen by normal evolutionary processes. So the general rule that gpuccio gives fails, as it is not reliable.
(3) The third possibility is an additional condition that is added to the design inference. It simply declares that unless the set of genotypes is effectively unreachable by normal evolutionary processes, we don’t call the pattern “complex functional information”. It does not simply define “complex functional information” as a case where we can define a level of function that makes probability of the set less than . That additional condition allows us to safely conclude that normal evolutionary forces can be dismissed — by definition. But it leaves the reader to do the heavy lifting, as the reader has to determine that the set of genotypes has an extremely low probability of being reached. And once they have done that, they will find that the additional step of concluding that the genotypes have “complex functional information” adds nothing to our knowledge. CFI becomes a useless add-on that sounds deep and mysterious but actually tells you nothing except what you already know. So CFI becomes useless. And there seems to be some indication that gpuccio does use this additional condition.
Let us go over these three possibilities in some detail. First, what is the connection of gpuccio’s “functional information” to Jack Szostak’s quantity of the same name?
Is gpuccio’s Functional Information the same as Szostak’s Functional Information?
gpuccio acknowledges that gpuccio’s definition of Functional Information is closely connected to Jack Szostak’s definition of it. gpuccio notes here:
Please, not[e] the definition of functional information as:
“the fraction of all possible configurations of the system that possess a degree of function >=
Ex.”which is identical to my definition, in particular my definition of functional information as the
upper tail of the observed function, that was so much criticized by DNA_Jock.
(I have corrected gpuccio’s typo of “not” to “note”, JF)
We shall see later that there may be some ways in which gpuccio’s definition
is modified from Szostak’s. Jack Szostak and his co-authors never attempted any use of his definition to infer Design. Nor did Leslie Orgel, whose Specified Information (in his 1973 book The Origins of Life) preceded Szostak’s. So the part about design inference must come from somewhere else.
gpuccio seems to be making one of three possible arguments;
Possibility #1 That there is some mathematical theorem that proves that ordinary evolutionary processes cannot result in an adaptation that has 500 bits of Functional Information.
Use of such a theorem was attempted by William Dembski, his Law of Conservation of Complex Specified Information, explained in Dembski’s book No Free Lunch: Why Specified Complexity Cannot Be Purchased without Intelligence (2001). But Dembski’s LCCSI theorem did not do what Dembski needed it to do. I have explained why in my own article on Dembski’s arguments (here). Dembski’s LCCSI changed the specification before and after evolutionary processes, and so he was comparing apples to oranges.
In any case, as far as I can see gpuccio has not attempted to derive gpuccio’s argument from Dembski’s, and gpuccio has not directly invoked the LCCSI, or provided a theorem to replace it. gpuccio said in a response to a comment of mine at TSZ,
Look, I will not enter the specifics of your criticism to Dembski. I agre with Dembski in most things, but not in all, and my arguments are however more focused on empirical science and in particular biology.
While thus disclaiming that the argument is Dembski’s, on the other hand gpuccio does associate the argument with Dembski here by saying that
Of course, Dembski, Abel, Durston and many others are the absolute references for any discussion about functional information. I think and hope that my ideas are absolutely derived from theirs. My only purpose is to detail some aspects of the problem.
and by saying elsewhere that
No generation of more than 500 bits has ever been observed to arise in a non design system (as you know, this is the fundamental idea in ID).
That figure being Dembski’s, this leaves it unclear whether gpuccio is or is not basing the argument on Dembski’s. But gpuccio does not directly invoke the LCCSI, or try to come up with some mathematical theorem that replaces it.
So possibility #1 can be safely ruled out.
Possibility #2. That the target region in the computation of Functional Information consists of all of the sequences that have nonzero function, while all other sequences have zero function. As there is no function elsewhere, natural selection for this function then cannot favor sequences closer and closer to the target region.
Such cases are possible, and usually gpuccio is talking about cases like this. But gpuccio does not require them in order to have Functional Information. gpuccio does not rule out that the region could be defined by a high level of function, with lower levels of function in sequences outside of the region, so that there could be paths allowing evolution to reach the target region of sequences.
An example in which gpuccio recognizes that lower levels of function can exist outside the target region is found here, where gpuccio is discussing natural and artificial selection:
Then you can ask: why have I spent a lot of time discussing how NS (and AS) can in some cases add some functional information to a sequence (see my posts #284, #285 and #287)
There is a very good reason for that, IMO.
I am arguing that:
1) It is possible for NS to add some functional information to a sequence, in a few very specific cases, but:
2) Those cases are extremely rare exceptions, with very specific features, and:
3) If we understand well what are the feature that allow, in those exceptional cases, those limited “successes” of NS, we can easily demonstrate that:
4) Because of those same features that allow the intervention of NS, those scenarios can never, never be steps to complex functional information.
Jack Szostak defined functional information by having us define a cutoff level of function to define a set of sequences that had function greater than that, without any condition that the other sequences had zero function. Neither did Durston. And as we’ve seen gpuccio associates his argument with theirs.
So this second possibility could not be the source of gpuccio’s general assertion about 500 bits of functional information being a reliable indicator of design, however much gpuccio concentrates on such cases.
Possibility #3. That there is an additional condition in gpuccio’s Functional Information, one that does not allow us to declare it to be present if there is a way for evolutionary processes to achieve that high a level of function. In short, if we see 500 bits of Szostak’s functional information, and if it can be put into the genome by natural evolutionary processes such as natural selection then for that reason we declare that it is not really Functional Information. If gpuccio is doing this, then gpuccio’s Functional Information is really a very different animal than Szostak’s functional information.
Is gpuccio doing that? gpuccio does associate his argument with William Dembski’s, at least in some of his statements. And William Dembski has defined his Complex Specified Information in this way, adding the condition that it is not really CSI unless it is sufficiently improbable that it be achieved by natural evolutionary forces (see my discussion of this here in the section on “Dembski’s revised CSI argument” that refer to Dembski’s statements here). And Dembski’s added condition renders use of his CSI a useless afterthought to the design inference.
gpuccio does seem to be making a similar condition. Dembski’s added condition comes in via the calculation of the “probability” of each genotype. In Szostak’s definition, the probabilities of sequences are simply their frequencies among all possible sequences, with each being counted equally. In Dembski’s CSI calculation, we are instead supposed to compute the probability of the sequence given all evolutionary processes, including natural selection.
gpuccio has a similar condition in the requirements for concluding that complex
functional information is present: We can see it at step (6) here:
If our conclusion is yes, we must still do one thing. We observe carefully the object and what we know of the system, and we ask if there is any known and credible algorithmic explanation of the sequence in that system. Usually, that is easily done by excluding regularity, which is easily done for functional specification. However, as in the particular case of functional proteins a special algorithm has been proposed, neo darwininism, which is intended to explain non regular functional sequences by a mix of chance and regularity, for this special case we must show that such an explanation is not credible, and that it is not supported by facts. That is a part which I have not yet discussed in detail here. The necessity part of the algorithm (NS) is not analyzed by dFSCI alone, but by other approaches and considerations. dFSCI is essential to evaluate the random part of the algorithm (RV). However, the short conclusion is that neo darwinism is not a known and credible algorithm which can explain the origin of even one protein superfamily. It is neither known nor credible. And I am not aware of any other algorithm ever proposed to explain (without design) the origin of functional, non regular sequences.
In other words, you, the user of the concept, are on your own. You have to rule out that natural selection (and other evolutionary processes) could reach the target sequences. And once you have ruled it out, you have no real need for the declaration that complex functional information is present.
I have gone on long enough. I conclude that the rule that observation of 500 bits of functional information is present allows us to conclude in favor of Design (or at any rate, to rule out normal evolutionary processes as the source of the adaptation) is simply nonexistent. Or if it does exist, it is as a useless add-on to an argument that draws that conclusion for some other reason, leaving the really hard work to the user.
Let’s end by asking gpuccio some questions:
1. Is your “functional information” the same as Szostak’s?
2. Or does it add the requirement that there be no function in sequences that
are outside of the target set?
3. Does it also require us to compute the probability that the sequence arises as a result of normal evolutionary processes?
No, that’s the claim made at EN&V:
“In the paper, Axe estimated the prevalence of sequences that could fold into a functional shape by random combinations. It was already known that the functional space was a small fraction of sequence space, but Axe put a number on it based on his experience with random changes to an enzyme. He estimated that one in 10^74 sequences of 150 amino acids could fold and thereby perform some function — any function.“
Wait, didn’t I point out this exact issue in my 2016 post on Axe’s work? Yes, yes I did. Look at that last claim I highlighted in bold.
“… any function.”
Any.
Function.
That’s a generalization about proteins of any function. I now see you take issue with those kinds of generalizations too. That we shouldn’t assume all functions are the same. So we can now agree that we simply cannot take Axe’s work and generalize it to any functional protein’s density in sequence space, right?
colewd:
Why do you need Rumraket’s hand-holding? You’ve already claimed that you understand his argument.
Well, then, let’s hear your “detailed” rebuttal.
Rumraket, to colewd:
He’ll get back to you after he ponders the impact on Jesus’s employment prospects.
When Bill says there is a probabilistic barrier, he means to say that known functional proteins are so rare and disconnected in protein sequence space that they can’t evolve. I have a hard time imagining I have ever agreed to that.
So where do you confabulate that I agreed to this?
Can you provide an example of someone within ID who makes this claim? I mean, the way you word it, anyone could be making that claim to the ID crowd. I’m not impressed.
Well, if that is what you mean by a probabilistic barrier then I would not say you agreed to that. To me the probabilistic barrier is the size of the search space and the time and resources that have been available to sample it.
🙂
Rumraket,
So the “fact of evolution” is unfalsifiable by experiment.
https://evolutionnews.org/2016/10/imagine_60_mill/
“This paper is interesting because it relates to the work of Douglas Axe that resulted in a paper in the Journal of Molecular Biology in 2004. Axe answered questions about this paper earlier this year, and also mentioned it in his recent book Undeniable (p. 54). In the paper, Axe estimated the prevalence of sequences that could fold into a functional shape by random combinations. It was already known that the functional space was a small fraction of sequence space, but Axe put a number on it based on his experience with random changes to an enzyme. He estimated that one in 10^74 sequences of 150 amino acids could fold and thereby perform some function — any function.”
As usual you write something idiotic.
When the fact of evolution is not contingent on a particular statement being true, then subjecting that particular statement to experiment cannot constitute a test of evolution (as evolution being true does not entail the statement having some particular truth-value).
That doesn’t mean evolution doesn’t make any testable predictions, which it clearly does.
But to test evolution you’d have to test what it DOES claim, not what it DOESN’T claim.
Think Bill, think!
Rumraket,
Let the testing begin. 🙂 Start with a model that can build a spliceosome by RMNS. Or are you pulling back on the on universal common descent claim?
The extend to which that response is stupid is difficult to overstate.
Testing claims about historical events are not contingent on direct experimental demonstration. If it was, that would nip yourself in the butt and you’d have to create life “from scratch” to show that such a thing is even possible.
If you disagree then kindly off you go to create life “from scratch”. Make the atoms and molecules, the energy to put into the system, the physical laws exhibited through the system’s behavior. And then make a fully functioning complex eukaryotic cell with a spliceosome suddenly come into existence through design. Good luck. Maybe if you just wish on it hard enough the power of divine immaterial thoughts outside of time and space will make it instantly manifest before you.
Now let’s not be ridiculous here. You obviously agree that we can know that certain historical events took place without us having to recreate them in a lab, or witness them transpire ourselves. In fact, you seem to be rather high on “inference to the best explanation” or something along those lines.
So with your double standard out of the way, we can proceed to the 2nd ultra-inanity your post contains: Some sort of relationship between common descent and the spliceosome. As already explained to you the fact of common descent isn’t even contingent on the spliceosome having evolved in any particular way. After all Michael Behe accepts common descent, yet thinks the spliceosome was designed.
Your objections keep failing before we even get to things like data and models. They fail at the level of basic logic and reasoning.
Bill… just get another hobby. 🙂
You know what? I’m done here. This thread contains all the posts in needs for a rational person to make a decision.
Rumraket,
You can test the mechanism Rum against its ability to produce FI. Enough FI to get it past step 1 of the universal common descent claim.
Let me ask you again. Are you pulling back from the claim of universal common descent?
If not, how are you going to support this claim beyond asserting that it is true?
So why can’t I decide?
It does, and they fail.
https://sites.google.com/site/darwinspredictions/home
Yes. Folding. Do you think just any sequence at random will fold, and once folded will have some function brought about due to that folded configuration?
While I admit that this thread, with almost 2,000 comments, is nevertheless not the longest-running thread at TSZ, there is hope. The subject appears to be gradually shifting to Common Descent. That was the topic of stcordova’s thread last October, one which accumulated over 5,000 comments.
So we may look forward to a new flood of comments, perhaps as many as 5,000 of them. We may end up with as many as 7,000 comments. What a delightful prospect.
Moving common descent discussion:
Ditto.
Joe Felsenstein,
I think an op from you on Ewert’s dependency model would be even better 🙂