In a recent OP I looked at a discovery by mathematician Norman Wildberger, who found a general method for generating power series solutions of polynomial equations of any degree. Wildberger has an interesting, extremely unconventional and (in my opinion) flawed philosophy of mathematics, which among other things denies the existence of irrational numbers. Here he explains why √2 doesn’t exist, at least not in the way that mainstream mathematicians thinks it does:
There’s lots to criticize about this, but I’ll save it for the comments.