[Here is something I just sent Casey Luskin and friends regarding the ENCODE 2015 conference. Some editorial changes to protect the guilty…]
One thing the ENCODE consortium drove home is that DNA acts like a Dynamic Random Access memory for methylation marks. That is to say, even though the DNA sequence isn’t changed, like computer RAM which isn’t physically removed, it’s electronic state can be modified. The repetitive DNA acts like physical hardware so even if the repetitive sequences aren’t changed, they can still act as memory storage devices for regulatory information. ENCODE collects huge amounts of data on methylation marks during various stages of the cell. This is like trying to take a few snapshots of a computer memory to figure out how Windows 8 works. The complexity of the task is beyond description.
To get a hint of the importance of the methylation marks see:
http://www.nature.com/nature/2015/180215/full/nature14310.html
So it’s just my conjecture, the repetitive DNA is there to act as dynamic store of data. We are fooled into thinking since the sequences don’t change much during an organism’s lifetime that it can’t act as an information processing system since we presume the relevant information is the DNA sequence, when in fact the critical information are the methylation marks.
The repetition is probably important for the organism to recognized the regions and say, “hey, here’s where a lot of RAM is for me to use.” The mistake is thinking the significant information content is in the “ACTG” sequences, it is not, it is in the methylation markings, and that could well be where some serious parts of ontogenic regulatory information is flowing through.
Gruar’s approach is akin to opening up a computer and examining the physical RAM in it and saying, “those VLSI transistors are all identical, look at all that repetition, therefore it’s junk!” What matters is when the computer is up and running and we’re seeing these transistors switching back and forth from 0 to 1. Those zero’s and ones are the DNA methylation marks for regulation (not the repetitive ACTG transistors), and that’s why I suspect Graur is way off mark. It really is too early to tell, I wouldn’t yet go out on limb, but Graur is going out on a limb, and if proven wrong, we can publicly call him on it.
Repetitive sequences are plug and play like computer RAM, and can be subject to some variation. But they need to be there.
stcordova,
Are we nocturnal all of a sudden?
More confirmation of my OP: