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How Should We Define ‘Fitness’ for 
General Ecological Scenarios? 

TREE vol. 7, no. 6, June 1992 

J.A.J. Metz, R.M, Nisbet and S.A.H, Geritz 

Beginners in life history theory or evol- 
utionary ecology seemingly face a variety 
of almost unrelated approaches. Yet the 
biomathematical fiterature of the last 
1 O-20 years reflects the implicit acceptance 
of a common evolutionary frameworli, the 
core idea 6eing that there exists a 
unique general fitness measure that con- 
cisely summarizes the overall time course 
of potential invasions 6y initially mre 
mutant phenotypes. Using such an in- 
vasion criterion to characterize fitness 
implicitly presupposes a scenario in which, 
during periods of clear evolutionary change, 
the rate of evolution is set primarily by the 
random occurrence (and initial estublish- 
ment) of fuvourable mutations. Evol- 
utionarily stable life history strategies 
(ESSs) may then 6e regarded as traps for 
the evolutionary random wulk. 

Three recent books’-3 and one 
survey papep provide a compre- 
hensive introduction to the math- 
ematical machinery for dealing with 
the population consequences of 
complicated life histories and/or 
ecological scenarios. Our aim here 
is to sketch the implied evolutionary 
framework in bare outline, with a 
minimum of technical detail yet with 
reference to nontrivial examples. In 
particular, we note that although 
there is no general sense in which 
evolution ‘maximizes fitness’, under 
various simplifying assumptions 
many of the special optimization 
criteria that can be found in the 
literature may be derived from 
invasibility considerations. Later in 
the article we elaborate a little 
on the theme of the evolutionary 
random walk, concentrating in 
particular on the nature of the 
‘evolutionary attractors’. We con- 
clude with some remarks concern- 
ing alternative genetic scenarios, 
and possible wider applications 
of the formalism. 

The simplest selection model 
The simplest textbook model for 

selection in large populations relies 
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on a number of assumptions: one 
locus with two alleles (say a and 
A), no (further) mutations, random 
mating, non-overlapping gener- 
ations, differential survival prior to 
reproduction (‘viability’) as the only 
selective force, and fully constant 
relative individual viabilities. In- 
vasion by A into a population made 
up of aa homozygotes is possible if 
(and effectively only if) the viability 
of the heterozygote aA exceeds that 
of the resident homozygotes. 
Let the difference between the 
logarithms of the heterozygote and 
resident homozygote viabilities be 
denoted as s,(A). This ‘selection 
coefficient’ equals the initial 
relative growth rate of the mutant 
frequency, after the initial hurdle of 
potential random extinction has 
been overcome. An aa population 
can be invaded by an A mutant if 
(and again effectively only if) s,(A) 
is positive. 

We can immediately extend this 
result to temporally variable en- 
vironments that affect only the 
viabilities, whether cyclical, random 
or chaotic, provided we define s,(A) 
to be the time average of the 
previously defined stepwise selec- 
tion coefficients, which now take a 
different value at each time step. 
Provided there are no longlasting 
environmental trends, this time 
average is independent of the 
starting moment, or the replicate 
(if we are dealing with stochastic 
environments). Then the selection 
coefficient can be interpreted as the 
difference between the long-run 
(logarithmic) growth rates of the 
invader and the resident popu- 
lation. 

Population dynamics in variable 
environments 

The foregoing observations can 
be extended in principle to more 
complicated ecological scenarios, 
the only proviso being that we may 
neglect the possibility of long-term 
(or preferential) interactions among 
individuals. The essential point is 
that the dynamics of an invader can 
be represented by linear equations, 
possibly with time-varying coef- 
ficients. In this section we discuss 
the rudiments of the theory of linear 

population equations, concentrat- 
ing on finite dimensional discrete 
time models. The extension to 
infinitely many dimensions and/or 
continuous time involves some care 
with definitions, replacement of the 
word ‘matrix’ with ‘linear operator”, 
a lot of hard mathematical work, but 
no new biological ideas. 

Consider a population, the in- 
dividual members of which may 
be found in an finite number of 
‘i-states’ representing physiologi- 
cal differences (for example in age, 
size or nutritional status) and/or 
‘x-states’ representing spatial 
location. The ‘h-state’ (meaning 
heterogeneity) of an individual is 
the combination of its i- and x-state. 
The population at time t is de- 
scribed by a vector N(t) which has 
for its components the densities 
of the individuals in each h-state. 
We can denote the total population 
size as 1 N(t)l . What happens to 
an individual, whether it migrates, 
changes i-state, gives birth or dies, 
depends in a probabilistic manner 
on its own h-state and on the overall 
condition of the environment E(t), 
and on nothing else. Here E(t) is 
a vector with quantities like the 
temperature, predation pressure, 
etc. at the different localities as 
components. 

Assume for the time being that E 
is given independently, as in the 
case of fully density-independent 
population dynamics. In that case, 

N(t fl) = B(E(t)) N(t) (1) 

with B(E(t)) a matrix whose el- 
ements depend on E(t), implying 

N(t) = B(E(I-I)) B(E(t-2)) . . . 
. . . B(E(O)) N(O) (2) 

Assume now that the environmen- 
tal process shows no longlasting 
trend. The so-called multiplicative 
ergodic theorem tells us that under 
very general conditions3 the rela- 
tive sizes of the components of N 
eventually become independent of 
N(O). It also tells us that the long-run 
growth rate, which can be defined as 
the limiting value, as (time) T ap- 
proaches infinity, of the quantity 

T-‘{ln(N(T)( - InlN(O)(} (3) 

is a fixed number. This number, 
which we denote by s because of the 
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analogy with our previous definition 
of selection coefficient, is known as 
the dominant Lyapunov exponent 
of the matrix process B(E(t)l, t = 0,1, 
2, . When the dominant Lyapunov 
exponent is negative the population 
goes extinct. When it is positive the 
population will grow asymptotically 
at a relative rate s, though possibly 
with a lot of fuzz around the overall 
exponential trend. 

When the environment is con- 
stant the dominant Lyapunov ex- 
ponent reduces to the logarithm 
of the dominant eigenvalue of 
the matrix B. For varying environ- 
ments it is rarely possible to find 
simple procedures for calculating 
s. Some biologically meaningful 
cases where explicit expressions 
have been found are reviewed by 
Tuljapurkar3,4. Such results are of 
great value as pointers to poss- 
ible general principles and as 
benchmarks for numerical work. 
But they represent a considerable 
mathematical achievement, and are 
only possible with very particular 
assumptions about the environ- 
mental variations. 

Where exact calculations of the 
dominant Lyapunov exponent are 
impossible or intimidating, there 
are two ways forward. If the en- 
vironmental variation is small, per- 
turbation methods are available. 
These can be particularly instruc- 
tive in disentangling the effect 
of various patterns of variation, as 
for example in the analysis of 
the factors involved in the evol- 
ution of iteroparity by Orzack 
and Tuljapurkar5. A second possi- 
bility is direct numerical evalu- 
ation from simulations of the 
population process. It may appear 
perverse to compute a quantity that 
purports to predict the long-term 
growth rate from simulations. Yet the 
theory plays a vital role, guaran- 
teeing the existence of a unique 
long-term relative growth rate. It 
even provides an asymptotic prob- 
ability distribution of the popu- 
lation size, thus permitting es- 
timates of s, with confidence limits 
attached, without excessive com- 
putational effort2. 

Equations ii I and (2) represent 
only book-keeping operations and 
as such still apply when the environ- 
ment is itself influenced by the 
population state (see Box I). Of 
course, in that case the amount of 

information that can be extracted 
from them is considerably less. 
However, they have one important 
consequence that we need for later 
use. When neither the variations in 
the environment nor those in the 
population state show longlasting 
trends, as is for example the case 
when there is no external forcing and 
the population state moves on 
a chaotic attractor, the dominant 
Lyapunov exponent of the matrix 
process B(ElN,t)), t = 0,1,2, . . . . equals 
zero. 

We can call s ‘the fitness of a 
(life history) phenotype in a given 
environment’. Clearly, s does not 
share all the properties of the fit- 
nesses of elementary population 
genetics (for example, it would no 
longer be permissible to talk about 
‘frequency-dependent fitnesses’ as 
the formal counterpart of pheno- 
type-dependent influences of the 
environment El; this simply is too 
strong a requirement. However, the 
pay-off is a sharpening of our 
understanding of the links between 
population genetics and evol- 
utionary ecology. 

Evolutionary ecology 
To analyse the initial fate of an A 

mutant entering a population made 
up of aa individuals, we note 
that Ii) initially the densities of 
AA homozygotes will be negli- 
gible relative to those of the aA 
heterozygotes, and Iii) the densities 
of the aA heterozygotes will in turn 
be negligible relative to those of the 

aa homozygotes. Let the stationary 
environmental time series which 
would result from the presence of 
only aa homozygotes be denoted 
as E,,. As a result of (il and (iii the 
population of aA heterozygotes 
cannot but satisfy (to first order of 
approximation) a linear recurrence 
of the form 

NJt + i I = BaAfE,,ltll N,,ltl (41 

All the conclusions put forward 
for the simplest selection model 
generalize if we choose for s,(A) the 
dominant Lyapunov exponent of 
the matrix sequence B,,&,(t)), t = 
0,I ,2, . . . Except in very contrived 
cases, A will replace a if both s,(A)>0 
and s,(a)<O. (Note that for any 
acceptable population mode1 s,(a) 
= 0; the seemingly different case of 
r-selection is considered below.) 
The previous considerations apply 
equally to the density- and fre- 
quency-dependent case@, as well 
as to situations with complicated 
attractors of the population dynam- 
ics, and environmental forcing. 

When there is no external forcing 
and the resident aa population may 
be considered to be at equilibrium, 
E,, is constant, and s,(A) equals the 
logarithm of the dominant eigen- 
value of the (now constant) matrix 
BaA(E,,L One immediate general re- 
sult in this context is that, subject to 
the condition that lifetime offspring 
production increases with ambient 
food density, a stable population 
that is limited by a single food 
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resource can always be invaded by 
mutants able to persist at lower food 
densities. 

We get the usual r-selection 
scenario if we assume that the 
environmental effects of the popu- 
lation state express themselves at 
any time step only as an equal 
proportional decrease of the sur- 
vival probabilities of all play- 
ers, independent of whether the 
population is decimated by rare 
catastrophes or is adjusted in a 
more continuous manner. In our 
framework, this is equivalent to the 
heterozygote dynamics allowing a 
representation of the form 

yJt + 1) = B,,(E(E,,N,,,t))N,,(t) 

=PW,,N,,,t) Q,,(EO(t))N,,(tl (5) 

with an analogous equation for the 
resident homozygote dynamics (re- 
place A everywhere with a). In this 
representation p<l is a scalar- 
valued function, and E, stands for 
any external forcing of the environ- 
ment like the weather. 0 is a matrix 
whose elements depend only on E,. 
From Eqn (5) it can be shown 
that s,(A) equals raA-raa where 

and r are respectively the 
kminant Yyapunov exponents of 
the matrix processes Q,,(E,(t)) and 
Q,,fE,ft)L 

As yet, little work has been 
done on cycling or chaotic resi- 
dent populations7-9 (M. Gatto, un- 
published; R. Ferriereand 1. Clobert, 
unpublished). However, Box 2 out- 
lines the results of an invasibility 
calculation for a well-known model 
used previously to test for the 
occurrence of chaotic fluctuations in 
real populations. 

The evolutionary random walk 
If we assume that the speed of 

evolution is effectively mutation- 
limited, i.e. most mutations proceed 
to near-fixation before the next 
advantageous mutant enters the 
scene, we can picture evolution 
geometrically as the movement of a 
point X through some trait space. 
Here X is a vector whose com- 
ponents represent the values of 
the traits under study; success- 
ful mutations cause X to jump 
to a new value. The ecologically 
possible evolutionary paths can 
be described in the language of 

I 
Lyapunov exponents: connected to 
any point X there is a set H(X) of 
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points Y such that s.J Y) > 0. Due to 
selection, a mutational step from 
X can only go to points in H(X); 
thus the ecological contribution to 
evolutionary change is neatly sum- 
marized by the sign structure of 
sx(Y ) considered as a function of the 
two variables X and Y. 

Points X* such that s,.(Y)<0 
for all (morphojgenetically poss- 
ible Y #X* act as evolutionary traps. 
These are the evolutionarily stable 
strategies (ESSS)‘~~“. At an ESS, the 
resident life history strategy maxi- 
mizes fitness, measured by the 
dominant Lyapunov exponent, 
under the corresponding environ- 
mental conditions. 

A problem with the ESS con- 
cept in its pure form is that even 
where an ESS exists there is no 
guarantee that the population will 
evolve towards it. A more stringent 
concept is that of a continuously 
stable strategy (CSS)‘2-‘4: an ESS X* 
satisfying the additional require- 
ment that s,(Y)>0 for all Y that in 
some sense lie ‘between’ X and X*, 
for Y sufficiently close to X, and for 
all X sufficiently close to X*. If 
mutations generally have small ef- 
fect a CSS is surrounded by a basin 
of attraction in trait space. 

A final consideration is that there 
may exist points X0 in trait space 
which locally attract the evol- 
utionary random walk, but which are 
not ESSs. Near such a point there 
exist mutually invasible points, 
so that the attraction towards X0 
spawns a polymorphism (Box 3), 
thus destroying our simple picture. 
Polymorphic situations are con- 
siderably more involved, and the 
overall theoretical picture is not 
entirely clear yet. 

Concluding remarks 
The take-home message is that 

the best available fitness measure 
in a variable nonlinear world is 
one based on dominant Lyapunov 
exponents. Reassuringly, many of 
the classical results in evolutionary 
genetics, in particular ESS con- 
siderations, generalize if we sub- 
stitute these Lyapunov exponents 
for the selection coefficients. Less 
welcome is that obtaining explicit 
closed-form expressions is seldom 
possible. But the blow is softened 
by the fact that the theory enables 
us to interpret the results of simu- 
lations with added confidence. 

There are of course major prob- 
lems as well. We have not dis- 
cussed the effects of locally finite 
populations, thereby precluding 
dealing with any aspects of in- 
clusive fitness15,16. Throughout, we 
presuppose that evolution is ef- 
fectively mutation-limited, i.e. can 
be treated as a sequence of 
single gene substitutions. Alterna- 
tive paradigms exist, notably quan- 
titative genetics’7-20, and it is far from 
clear whether a similar smooth 
extension to more general ecologi- 
cal scenarios can be made there. 
Luckily there exist some proofs that 
the usual ESSs also appear as ‘final 
stops’ for large classes of fairly com- 
plicated genetic architectures2t-25. 
We expect that these proofs can, 
with some effort, be extended to 
cover the kind of structured popu- 
lations considered in this article, but 
only for the case of population 

dynamical equilibrium. Whether 
analogous results hold good for 
fluctuating environments is an im- 
portant, but probably extremely 
hard, open problem! 

To end on a more positive note, 
although we have written this 
article with an eye on ques- 
tions in evolutionary population 
ecology, the methods discussed 
are well established in studies 
of invasion and persistence in 
communities26. Furthermore, math- 
ematical methods relating to fitness 
and invasibility apply equally well 
to problems of ‘unfitness’ and 
extinction, notably those in conser- 
vation ecology, where the emphasis 
is on finding and controlling factors 
responsible for population decline4. 
Here environmental variability is 
again an issue, and theoreticians 
should (explicitly or implicitly) in- 
voke Lyapunov exponents. 
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Beyond the Prisoner’s Dilemma: 
Toward Models to Discriminate 
among Mechanisms of Cooperation 
in Nature 
Lee Alan Dugatkin, Michael Mesterton-Gibbons and 
Alasdair I. Houston 

The iterated prisoner’s dilemma game, or IPD, kas now established itself as the 
orthodox paradigm for theoretical investigations of tke evolution of cooperation; but its 
scope is restricted to reciprocity, wGriccl is only one of tkree categories of cooperation 
among unrelated individuals. Even within that category, a cooperative encounter has 
in general three phases, and the IPD has nothing to say about two of them. To 
distinguish among mechanisms of cooperation in nature, future theoretical work on 
the evolution of cooperation must distance itself from economics and develop games 
as a refinement of ethology’s comparative approach. 

Many of the theoretical frame- 
works used in modern behavioral 
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ecology have been imported from 
economics. A case in point is the 
study of the evolution of cooper- 
ative behavior: Hamilton’ used 
economic optimization models to 
formalize inclusive fitness theory 
and its ramifications for the evol- 
ution of cooperation, while Trivers2 
suggested in his seminal paper that 
cooperation among unrelated in- 
dividuals may best be studied using 
methods developed in economic 
game theory. 

_ A game is a mathematical model 
of conflict or bargaining. Game 
theory explicitly recognizes that 
an individual’s fitness depends 
not only on its own behavior but 
also on the behavior of others. 
Economic game theory has failed 
to provide a model for every oc- 
casion, however, and in such cir- 
cumstances behavioral ecologists 
have been remarkably resourceful 
in developing their own product. 
The most celebrated example is 
surely Maynard Smith’s concept3 of 
evolutionarily stable strategy, or 
ESS, which economists have im- 
ported into their literature in recent 
years to complete a cycle of trade. 

If the success of a model is 
measured by the size of the litera- 
ture it spawns, then the most 
successful model in studying the 
evolution of cooperation is unques- 
tionably the prisoner’s dilemma, or 
PD. The PD is a two-player, two- 
strategy game with both pay-off and 
informational symmetry (see Box I). 

In the PD, a player chooses either to 
cooperate (C) or to defect (D = not 
cooperate). On any single move of 
the game, to defect yields a greater 
pay-off than to cooperate (as T >R 
and P >S), but mutual cooperation 
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